Abstract

In this article, nanocrystalline silicon carbide (nc-SiC) and composite have been synthesized at an annealing temperature as low as 750 °C through the thermal reaction of Si/C/Si multilayers deposited on the Si(100) substrate by ultra-high-vacuum ion beam sputtering (UHV IBS) compared with the conventional thermal formation of crystalline SiC (c-SiC) nanostructures above 1,000 °C. The evolution of microstructure and reaction between C and Si was examined by Raman spectroscopy, Fourier transform infrared spectrometer (FTIR), high-resolution field emission scanning electron microscope (HR-FESEM), and high-resolution transmission electron microscopy. The c-SiC nanoparticles (np-SiC) of around 20–120 nm in diameter appeared on the top and bottom of the three-layer film with a particle density of around 2.63 × 1010 cm−2 after 750 °C annealing. The composite of nc-SiC and Si nanocrystals (nc-Si) size below 5 nm embedded in an amorphous SiC (a-SiC) matrix appeared at the interface between the Si and C layers. Efficient thermal energy is the driving force for the formation of nc-SiC and composite through interdiffusion between C and Si. The broad visible photoluminescence (PL) spectrum of 350–750 nm can be obtained from the annealed composite Si/C/Si multilayer and deconvoluted into four bands of blue (~430 nm), green (~500 nm), green–yellow (~550 nm), and orange (~640 nm) emission, corresponding to the emission origins from nc-SiC, sp2 carbon clusters, np-SiC, and nc-Si, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.