Abstract

Low-temperature preparation of efficient electron transport layer (ETL) can effectively expand the application of perovskite solar cells (PSCs). We herein introduce anatase TiO2 nanoparticles (NPs) with an average diameter of 15 nm prepared by hydrothermal method and optimized with acetic acid (AA) as well as oleic acid (OA). The Ti3+ as well as Ti–OH signals indicate the surface defects of TiO2 NPs investigated by X-ray photoelectron spectroscopic (XPS) are observed to be passivated by the modifiers through chelate or bridging pattern. Thus, when the modified NPs are dispersed into the precursor for spin-coating ETLs under 150 °C, higher power conversion efficiency (PCE) of 20.15% and 19.41% is achieved based on planar structured PSC using TiO2 modified with AA and OA, respectively. The device stability is also considerably increased. Analyzed by photoluminescence and electrochemical impedance spectroscopies, the improved cell performance can be ascribed to the reduced charge transport resistance, enhanced electron extraction, and suppressed recombination behavior. We anticipate this facile approach of fabricating efficient TiO2 ETLs can be further employed into PSCs commercialization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.