Abstract

The sustainable conversion of vegetable biomass-derived feeds to useful chemicals requires innovative routes meeting environmental and economical criteria. The approach herein pursued is the synthesis of water-tolerant, unconventional solid acid monolithic catalysts based on a mixed niobia-titania skeleton building up a hierarchical open-cell network of meso- and macropores, and tailored for use under continuous-flow conditions. The materials were characterized by spectroscopic, microscopy, and diffraction techniques, showing a reproducible isotropic structure and an increasing Lewis/Brønsted acid sites ratio with increasing Nb content. The catalytic dehydration reaction of xylose to furfural was investigated as a representative application. The efficiency of the catalyst was found to be dramatically affected by the niobia content in the titania lattice. The presence of as low as 2 wt % niobium resulted in the highest furfural yield at 140 °C under continuous-flow conditions, by using H2 O/γ-valerolactone as a safe monophasic solvent system. The interception of a transient 2,5-anhydroxylose species suggested the dehydration process occurs via a cyclic intermediates mechanism. The catalytic activity and the formation of the anhydro intermediate were related to the Lewis acid sites (LAS)/Brønsted acid sites (BAS) ratio and indicated a significant contribution of xylose-xylulose isomerization. No significant catalyst deactivation was observed over 4 days usage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.