Abstract

The Fe–N–C-based carbon materials, which are generally formed by high-temperature annealing, have been highlighted as a promising alternative to expensive Pt electrocatalysts for oxygen reduction reaction. However, the delicate formation of active sites remains an issue because of decomposition and transformation of the macrocycle during heat treatment. Accordingly, we developed a low-temperature and gram-scale approach to synthesizing iron phthalocyanine (Pc)-embedded two-dimensional carbon sheets by annealing at 450 °C. The low-temperature annealing process, which is motivated by the synthesis of carbon nanoribbons, is suitable for maintaining the Fe–N–C structure while enhancing coupling with carbon. Our two-dimensional carbon sheets show higher ORR activity than commercial Pt catalyst in alkaline media. Furthermore, the feasibility of real application to alkaline membrane electrolyte fuel cell is verified by superior volumetric current density. In durability point of view, the initial activity is reta...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call