Abstract
<h2>Summary</h2> Aerobic oxidation desulfurization (AODS) represents a carbon-neutral way to desulfurize petroleum distillates, yet it currently suffers from low efficiency and high temperature for the activation of triplet oxygen. Here, we report a sub-nanometer-thick cobalt hydroxide nanosheet that hosts an atomic molybdenum (Mo/Co(OH)<sub>2</sub>) catalyst for the efficient aerobic oxidation of thiophenic sulfides. The catalyst achieves a turnover frequency of two orders of magnitude over that of state-of-the-art multi-metallic oxide catalysts and activates the reaction at 60°C. Coupling detailed characterizations with theoretical calculations, we formulate a descriptor—the work function of hosting materials for this reaction, which well explains the host identity dependence of the corresponding catalytic performance. We achieve the complete AODS of real diesel at 80°C under ambient pressure with negligible decay in consecutive reuses, highlighting the appealing industrial potential of our catalyst. Our findings provide fundamental and technological insights into implementing high-efficiency catalysts for the carbon-neutral AODS process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.