Abstract
The proteome and its time-dependent effects reveal the importance of stress response (including expression regulation of heat-shock proteins) and fatty acid metabolism in cold adaptation and preservation of Hami melon. To better understand the molecular mechanism of how Hami melons respond to low-temperature stress, this study investigated the relevant physiological characteristics, catalytic antibody activity, and quantitative proteomics of Hami melon (Jiashi muskmelon) during low-temperature storage. Jiashi muskmelon was stored inside two refrigerators set at 21°C (control group) and 3°C, respectively, for 24days. Low-temperature storage led to a significantly reduced decay rate, weight loss rate, and loss of relative conductivity. It also maintained fruit firmness, inhibited the production rate of malondialdehyde and H2O2, and induced over-expression of antioxidant enzyme and ATPase. A total of 1064 differentially expressed proteins (DEPs) were identified during low-temperature storage. Stimulation response was the main process in response to low-temperature. To further verify the proteome data, we selected four heat-shock proteins (HSP) displaying relatively high expression levels. Real-time fluorescence PCR results confirmed that HmHSP90 I, HmHSP90 II, HmHSP70, and HmsHSP were significantly up-regulated upon low-temperature induction. These proteins may protect the Hami melon from physiological and cellular damage due to the low-temperature stress by acting alone or synergistically. Additionally, the main enrichment term of the fatty acid metabolism-related DEPs was fatty acid beta oxidation at 21°C in contrast to fatty acid biosynthesis processes at 3°C. It is speculated that Hami melon enhances low-temperature adaptability by slowing down the oxidative degradation of fatty acids and synthesizing new fatty acids at low temperatures. This study provides new insights into the mechanism of low-temperature adaptation and preservation in post-harvest Hami melon during cold storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.