Abstract

In this study, three different chitosan microsphere derivatives were prepared as sorbents for basic dyes. Preparation was succeeded by a novel cross-linking method based on ionic gelation with tripolyphosphate and subsequent covalent cross-linking with glutaraldheyde in order to address the large amount of swelling of the powdered form of the respective derivatives. Basic blue 3G (dye) was selected as the sorbate, and chitosan microsheres grafted with acrylamide and acrylic acid were used as biosorbents. Techniques such as FTIR spectroscopy, SEM, and swelling measurements facilitated the evaluation of the materials. Sorption-desorption experiments over the whole pH range were carried out to reveal the optimum value of sorption-desorption. The Langmuir isotherm model was used to fit the equilibrium experimental data, giving a maximum sorption capacity of 0.808 mmol/g at 338 K. An intraparticle diffusion model was employed to fit the kinetic data, and the resulting diffusion coefficients were in the range of (1-10) x 10(-11) m(2)/s. Thermodynamic analysis showed that the sorption process was spontaneous and endothermic with an increased randomness. In addition, sorption experiments were realized with a mixture of three basic dyes at various concentrations of sorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call