Abstract

We present low-scaling algorithms for GW and constrained random phase approximation based on a symmetry-adapted interpolative separable density fitting (ISDF) procedure that incorporates the space-group symmetries of crystalline systems. The resulting formulations scale cubically, with respect to system size, and linearly with the number of k-points, regardless of the choice of single-particle basis and whether a quasiparticle approximation is employed. We validate these methods through comparisons with published literature and demonstrate their efficiency in treating large-scale systems through the construction of downfolded many-body Hamiltonians for carbon dimer defects embedded in hexagonal boron nitride supercells. Our work highlights the efficiency and general applicability of ISDF in the context of large-scale many-body calculations with k-point sampling beyond density functional theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call