Abstract

In many moduli stabilization schemes in string theory, the scale of inflation appears to be of the same order as the scale of supersymmetry breaking. For low-scale supersymmetry breaking, therefore, the scale of inflation should also be low, unless this correlation is avoided in specific models. We explore such a low-scale inflationary scenario in a racetrack model with a single modulus in type IIB string theory. Inflation occurs near a point of inflection in the K\"ahler modulus potential. Obtaining acceptable cosmological density perturbations leads to the introduction of magnetized D7-branes sourcing non-perturbative superpotentials. The gravitino mass, m_{3/2}, is chosen to be around 30 TeV, so that gravitinos that are produced in the inflaton decay do not affect big-bang nucleosynthesis. Supersymmetry is communicated to the visible sector by a mixture of anomaly and modulus mediation. We find that the two sources contribute equally to the gaugino masses, while scalar masses are decided mainly by anomaly contribution. This happens as a result of the low scale of inflation and can be probed at the LHC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call