Abstract
A lot of research aims to improve accuracy in end-to-end speech recognition, and achieves higher accuracy on various famous corpora. However, there are many languages which do not have enough data to build their speech recognition system in the world. The system often cannot get a reliable result and be used in the real-world. Therefore, how to build a robust low-resource speech recognition system is an important issue in speech recognition. In this paper, we use ESPnet toolkit to implement an end-to-end speech recognition model based on sequence-to-sequence architecture, and use Fairseq toolkit to implement an unsupervised pre-training model for assisted speech recognition. In addition, we use unlabeled speech data to help extract speech features, and transfer a speech recognition model with sufficient corpus to Hakka speech recognition with less corpus through transfer learning. Experimental results show that we establish a more robust low-resource Hakka speech recognition system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.