Abstract

This paper describes the evaluation of the performance of ESPs operating downstream of spray dryers in high- and medium-sulfur coal flue gas streams. Tests were conducted at the TV A10 MW Spray Dryer/ESP Pilot Plant and the EPRI High Sulfur Test Center. The results of the analysis of particle characteristics, spray dryer operating parameters, and ESP operating variables identify the occurrence of severe particle reentrainment due to the low resistivity (108 ohm-cm and lower) of the sorbent/flyash mixtures at low approach-tosaturation temperatures. The reentrainment has a significant impact on the collection efficiency of ESPs which could represent a fundamental limitation on their ability to adequately perform in this environment. Although this program has been focused on spray dryer applications, because of the similarities of the gas and particle characteristics produced from spray drying and other dry scrubbing processes, the results also have implications to duct slurry injection, dry sorbent injection with humidification, and processes involving furnace sorbent injection with humidification. The performance characteristics of the ESPs are presented under both baseline and spray dryer conditions. The results are analyzed and the Southern Research Institute ESP Computer Model was used to evaluate the data. Special techniques for measuring particle resistivity at these conditions are described. A theoretical examination of particle reentrainment was undertaken which indicated that at low-resistivity levels the electrostatic forces reverse and tend to pull the particles off the plates with a force proportional to the square of the electric field. This repulsion of particles from the plates at spray dryer conditions was confirmed by laboratory experiments. Chloride content of the coal was found to be an important parameter effecting the performance of the ESP. Implications of the results of this evaluation relative to ESP upgrades are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.