Abstract

Low-refractive-index and high-transmittance silicon oxide (SiOx) with a mixed phase of n-type microcrystalline silicon was developed for intermediate reflector layers (IRLs) of high-efficiency amorphous Si and microcrystalline-Si tandem solar cells. The refractive index, crystalline fraction, and conductivity of the SiOx IRLs were characterized as functions of the deposition conditions. The SiOx films were prepared by plasma-enhanced chemical vapor deposition, at a high pressure of 9Torr and high hydrogen dilution ratio of 400, and using a narrow electrode gap of 12mm. The films showed a refractive index of 1.85, crystalline fraction of ~50%, and conductivity of ~10−7S/cm. Furthermore, the transmittance of the films was more than 90% at wavelengths between 600nm and 1100nm. We present here the procedure to optimize the SiOx IRLs, which is to compare the changes in the top and bottom cells' current densities of the tandem solar cells fabricated with 10–20% thinner absorption layers. A stabilized efficiency of 11.12% and light-induced degradation of −9.3% could be achieved in a tandem module containing an optimized IRL by enhancing the top cell current. The SiOx IRLs developed and the optimization procedure discussed in this paper can be very useful for the fabrication of high-efficiency thin-film Si tandem modules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.