Abstract

This paper proposes a tensor completion method for the recovery of missing phasor measurement unit (PMU) measurements. Tensor completion as the general case of matrix completion has attracted increasing attention in recent years. The imputation accuracy for the existing matrix completion methods may be significantly reduced when there are consecutive data losses across multiple data channels. To tackle this issue, we explore the multi-way characteristics of PMU measurements by using a tensor model. We leverage the low-rank property of the PMU measurements and formulate the missing PMU data recovery problem as a low-rank tensor completion problem. An efficient algorithm based on alternating direction method of multipliers (ADMM) is developed to solve the tensor completion problem. The experiments using the real PMU dataset show that the proposed method exhibits better imputation accuracy compared with the conventional data recovery methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.