Abstract
Construction of spline surfaces from given boundary curves is one of the classical problems in computer aided geometric design, which regains much attention in isogeometric analysis in recent years and is called domain parameterization. However, for most of the state-of-the-art parameterization methods, the rank of the spline parameterization is usually large, which results in higher computational cost in solving numerical PDEs. In this paper, we propose a low-rank representation for the spline parameterization of planar domains using low-rank tensor approximation technique, and apply quasi-conformal map as the framework of the spline parameterization. Under given correspondence of boundary curves, a quasi-conformal map with low rank and low distortion between a unit square and the computational domain can be modeled as a non-linear optimization problem. We propose an efficient algorithm to compute the quasi-conformal map by solving two convex optimization problems alternatively. Experimental results show that our approach outperforms previous approaches in producing bijective and low-rank parametric spline representations of planar domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.