Abstract
Minimization of the nuclear norm, NNM, is often used as a surrogate (convex relaxation) for finding the minimum rank completion (recovery) of a partial matrix. The minimum nuclear norm problem can be solved as a trace minimization semidefinite programming problem, SDP. Interior point algorithms are the current methods of choice for this class of problems. This means that it is difficult to: solve large scale problems; exploit sparsity; and get high accuracy solutions. The SDP and its dual are regular in the sense that they both satisfy strict feasibility. In this paper we take advantage of the structure of low rank solutions in the SDP embedding. We show that even though strict feasibility holds, the facial reduction framework used for problems where strict feasibility fails can be successfully applied to generically obtain a proper face that contains all minimum low rank solutions for the original completion problem. This can dramatically reduce the size of the final NNM problem, while simultaneously guaranteeing a low-rank solution. This can be compared to identifying part of the active set in general nonlinear programming problems. In the case that the graph of the sampled matrix has sufficient bicliques, we get a low rank solution independent of any nuclear norm minimization. We include numerical tests for both exact and noisy cases. We illustrate that our approach yields lower ranks and higher accuracy than obtained from just the NNM approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.