Abstract
There has been a significant interest in the recovery of low-rank matrices from an incomplete of measurements, due to both theoretical and practical developments demonstrating the wide applicability of the problem. A number of methods have been developed for this recovery problem, however, a principled method for choosing the unknown target rank is generally missing. In this paper, we present a recovery algorithm based on sparse Bayesian learning (SBL) and automatic relevance determination principles. Starting from a matrix factorization formulation and enforcing the low-rank constraint in the estimates as a sparsity constraint, we develop an approach that is very effective in determining the correct rank while providing high recovery performance. We provide empirical results and comparisons with current state-of-the-art methods that illustrate the potential of this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.