Abstract

This article proposes a new method to realize a low-profile broadband absorber. The unit cell of the proposed absorber consists of two layers: a lossy layer with four rotationally symmetric bent metallic strips embedded with two chip-resistors, which is modified from a doubly fed dipole antenna, and a metallic ground separated from the lossy layer by an air spacer. Three resonant modes of the metallic strip embedded with two chip-resistors are generated, and the current in the strip passes through the chip-resistors under different modes and it is finally consumed, resulting in energy dissipation. As a result, an ultrawideband absorber is realized. The designed absorber is fabricated and measured, and the measured absorption band with a fractional bandwidth of 127.9% is achieved for at least 10-dB reflectivity reduction under the normal incidence. In addition, the thickness of the designed absorber is only $0.08\lambda _{L}$ , where $\lambda _{L}$ is the wavelength at the lowest operating frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.