Abstract
In this paper we study the technology mapping problem of FPGA architectures with dual supply voltages (Vdds) for power optimization. This is done with the guarantee that the mapping depth of the circuit will not increase compared to the circuit with a single Vdd. We first design a single-Vdd mapping algorithm that achieves better power results than the latest published low-power mapping algorithms. We then show that our dual-Vdd mapping algorithm can further improve power savings by up to 11.6% over the single-Vdd mapper. In addition, we investigate the best low-Vdd/high-Vdd ratio for the largest power reduction among several dual-Vdd combinations. To our knowledge, this is the first work on dual-Vdd mapping for FPGA architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.