Abstract

Due to the fact that low-power gadgets are currently dominating the electronics sectors, researchers are studying their design. Power management is a crucial parameter for designing VLSI circuits since it is essential for estimating the performance of devices, especially those utilized in biomedical and IoT applications. To achieve greater performance, designing a low-power system on a IC is becoming increasingly challenging due to the reduction in size of chip, increases in chip density, and rise in device complexity. Furthermore, for the less than 90 nm node, due to its increasingly complicated design, the total power factor on a chip is turning into a significant difficulty. Leakage current also has a significant effect on how low-power VLSI devices manage their power. Leakage and dynamic power reduction are increasingly being prioritized in VLSI circuit design in order to improve the battery life of electronic portable devices. The many methodologies, tactics, and power management schemes that can be employed for the design of low-power circuit systems are discussed in this chapter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.