Abstract

This paper describes the design, optimization, and evaluation of the power electronics circuitry for a low-power portable thermophotovotaic (TPV) generator system. TPV system is based on a silicon micro-reactor design and low-bandgap photovoltaic (PV) diodes. We outline critical system-level challenges associated with TPV power generation, and propose a power electronics architecture that addresses these challenges. We present experimental data from a compact, highly efficient peak power tracker and show how the proposed architecture enables increased energy extraction compared to conventional methods. The operation of the power tracker is verified with low-bandgap PV cells illuminated by a quartz halogen lamp producing a PV diode output power of 0.5 W, and above 99% tracking efficiency is demonstrated. Additionally, the complete system operation is verified with the power tracker connected to GaInAsSb PV diodes and a silicon micro-reactor, producing 150 mW of electrical power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call