Abstract
Photonic integrated circuits (PICs) are a key component [1] for future telecommunication networks, where demands for greater bandwidth, network flexibility, low energy consumption and cost must all be met. The quest for all optical components has naturally targeted materials with extremely large nonlinearity, including chalcogenide glasses (ChG) [2] and semiconductors, such as silicon [3] and AlGaAs [4]. Yet issues such as immature fabrication technologies for ChG, and high linear and nonlinear losses for semiconductors, motivate the search for other materials. Here we present the first demonstration of nonlinear optics in integrated silica based glass waveguides using continuous wave (CW) light. We demonstrate four wave mixing (FWM), with low (7mW) CW pump power at a wavelength of 1550nm, in high index doped silica glass ring resonators capable of performing in photonic telecommunications networks as linear filters [5]. The high reliability, design flexibility, and manufacturability of our device raises the possibility of a new platform for future low cost nonlinear all optical PICs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.