Abstract
Since wearable devices, sensor devices, or implanted devices are powered by batteries, they need to maintain long working time, especially implantable devices, because the battery needs to be replaced by surgery. This chapter introduces how to implement low-power, low-voltage VLSI circuit design.In addition to realizing more transistors in the same area to comply with Moore’s Law, advances in semiconductor technology have also brought many benefits, such as smaller areas, faster speed, more functions, and lower power consumption. From the perspective of technological evolution, there are many compromises in consideration of transistor characteristics. To produce good transistor characteristics, designers must weigh these transistor characteristics to achieve the best design performance or operating point. However, these advanced process nodes have also brought some problems, such as various leakage currents, and battery-powered devices cannot tolerate the waste of electricity. Therefore, we will discuss how to achieve low voltage and low power consumption in digital circuit design, including possible solutions and recommendations, and the trade-offs of reducing dynamic power, static power, and leakage current. Next, we will present the problems faced by low-voltage analog circuit design, and then discuss traditional design methods and gm/ID design methods. Finally, we will discuss some considerations for the design and implementation of nano-analog circuits.KeywordsBias technologyClock gatingDynamic powergm/ID design methodhigh-K dielectricMultiple power-supply voltagesNear-threshold calculation (NTC)OTAParallelismPN junction reverse bias current (IJ)Power gatingSignal integrityStatic powerSubthreshold leakage (Isub)Tunneling into and through gate oxide (IG)Voltage scaling
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.