Abstract

A class of the almost-maximally flat (AMF) lowpass filters with Chebyshev stopband attenuation, referred to as AMF filters, is discussed. Allpole lowpass filters’ transfer functions are first derived by using parameters α and β of modified Jacobi polynomials J n ( α β ) ( Ω ) such that passband attenuation is minimised, and obtained transfer functions are then augmented by adding one or several pairs of j Ω -axis transmission zeros. The magnitude characteristics of proposed filters are compared with those of the Chebyshev II filters and are found to be superior, both in the passband and in the stopband.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.