Abstract

AbstractSelf‐assembled monolayers (SAMs) are molecular assemblies that spontaneously form on an appropriate substrate dipped into a solution of an active surfactant in an organic solvent. Organic field‐effect transistors are described, built on an SAM made of bifunctional molecules comprising a short alkyl chain linked to an oligothiophene moiety that acts as the active semiconductor. The SAM is deposited on a thin oxide layer (alumina or silica) that serves as a gate insulator. Platinum–titanium source and drain electrodes (either top‐ or bottom‐contact configuration) are patterned by using electron‐beam (e‐beam) lithography, with a channel length ranging between 20 and 1000 nm. In most cases, ill‐defined current–voltage (I–V) curves are recorded, attributed to a poor electrical contact between platinum and the oligothiophene moiety. However, a few devices offer well‐defined curves with a clear saturation, thus allowing an estimation of the mobility: 0.0035 cm2 V–1 s–1 for quaterthiophene and 8 × 10–4 cm2 V–1 s–1 for terthiophene. In the first case, the on–off ratio reaches 1800 at a gate voltage of –2 V. Interestingly, the device operates at room temperature and very low bias, which may open the way to applications where low consumption is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.