Abstract

Avalanche photodiodes (APD) can improve the signal to noise ratio in applications such as LIDAR, range finding and optical time domain reflectometry. However, APDs operating at eye-safe wavelengths around 1550 nm currently limit the sensitivity because the APDs’ impact ionization coefficients in the avalanche layers are too similar, leading to poor excess noise performance. The material AlGaAsSb has highly dissimilar impact ionization coefficients (with electrons dominating the avalanche gain) so is an excellent avalanche material for 1550 nm wavelength APDs. We previously reported a 1550 nm wavelength AlGaAsSb SAM APD with extremely low excess noise factors, 1.93 at a gain of 10 and 2.94 at a gain of 20. Using a more optimized design, we have now realized an AlGaAsSb SAM APD with a lower dark current (7 nA at a gain of 10 from a 230 μm diameter APD), a higher responsivity (0.97 A/W) and a lower excess noise (1.9 at a gain of 40), compared to our previous SAM APD. Noise-equivalent-power (NEP) measurements of our APD with a simple transimpedance amplifier circuit produced an NEP 12 times lower than a state-of-the-art APD under identical test conditions, confirming the advantage of low-noise AlGaAsSb SAM APDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call