Abstract

In order to reduce by-product nitrite, a more toxic compound than nitrate, and increase high value-added products ammonia in the electrochemical reduction nitrate process, the novel Cu-Co/Ti cathode material was applied in this process. In this paper, the electrochemical process was carried out in a single compartment electrolytic cell, and with Cu-Co/Ti electrode as cathode, identifying the effects of current density, pH, electrolytes in the nitrate reduction, and the distribution of products. The Cu-Co/Ti cathode exhibited 94.65% NO3--N (nitrate-N) removal, 0.18% NO2--N (nitrite-N) generation, and 40.86% NH4--N (ammonia-N) generation with the assistance of Na2SO4 electrolyte in 6h at 10mAcm-2 and pH 6. Compared with the Cu/Ti cathode, the higher nitrate removal ratio and lower nitrite generation ratio were obtained on the Cu-Co/Ti cathode. The excellent performance of Cu-Co/Ti cathode is ascribed to the synergy of Cu and Co, which couples the facilitation of nitrate conversion to nitrite and the acceleration of nitrite reduction on the Cu-Co/Ti cathode. The LSV curves showed that nitrate and nitrite might undergo indirect and direct reduction reactions on Cu-Co/Ti cathode. The possible pathways of nitrate reduction on the Cu-Co/Ti cathodes were proposed. These results highlight the viability of using the Cu-Co/Ti cathode developed at this work for the nitrate removal from contaminated waters. This study achieved low-nitrite generation by Cu-Co/Ti cathode during electrochemical nitrate reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.