Abstract

We have developed techniques for fabricating extremely low-loss channel waveguide structures on silicon substrates. We have made and evaluated waveguides consisting of combinations of Corning 7059 glass, phosphorus-doped silica glass (PSG), and boron-doped silica glass (BSG). The waveguides were fabricated on the surfaces of oxidized silicon wafers. The 7059 waveguides were patterned in rf-sputter-deposited films, and the PSG waveguides were made using atmospheric-pressure, chemical vapor deposition (APCVD), low-pressure, chemical vapor deposition (LPCVD), and plasma-enhanced, chemical vapor deposition (PECVD). BSG was used strictly as a cladding layer for many of the waveguides. We present a comparison of the waveguides prepared by these methods, and discuss the processing techniques used to make channel waveguides with propagation losses less than 0.01 dB/cm. The processes we used allowed us to make waveguides with cross-sections ranging from rectangular to nearly circular, and to build multiguide structures with the waveguides stacked vertically or arranged side by side. Applications for these waveguides include low-loss splitters and combiners, high-finesse resonators, switches, and wavelength division multiplexers/demultiplexers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.