Abstract

A hollow-core fiber using anisotropic anti-resonant tubes in the cladding is proposed for low loss and effectively single-mode guidance. We show that the loss performance and higher-order mode suppression is significantly improved by using symmetrically distributed anisotropic anti-resonant tubes in the cladding, elongated in the radial direction, when compared to using isotropic, i.e. circular, anti-resonant tubes. The effective single-mode guidance of the proposed fiber is achieved by enhancing the coupling between the cladding modes and higher-order-core modes by suitably engineering the anisotropic anti-resonant elements. With a silica-based fiber design aimed at 1.06 µm, we show that the loss extinction ratio between the higher-order core modes and the fundamental core mode can be more than 1000 in the range 1.0-1.65 µm, while the leakage loss of the fundamental core mode is below 15 dB/km in the same range.

Highlights

  • Light guidance in hollow-core fibers (HCFs) [1,2] has enabled new applications due to their extraordinary properties compared to solid-core fibers: when light propagates in a gas-filled core instead of glass, it propagates faster and often with low dispersion, and the gas tolerates extremely large pulse energies and allow tunable control over dispersion and nonlinearity through pressure [3]

  • A hollow-core fiber using anisotropic anti-resonant tubes in the cladding is proposed for low loss and effectively single-mode guidance

  • With a silicabased fiber design aimed at 1.06 μm, we show that the loss extinction ratio between the higher-order core modes and the fundamental core mode can be more than 1000 in the range 1.0-1.65 μm, while the leakage loss of the fundamental core mode is below 15 dB/km in the same range

Read more

Summary

Introduction

Light guidance in hollow-core fibers (HCFs) [1,2] has enabled new applications due to their extraordinary properties compared to solid-core fibers: when light propagates in a gas-filled core instead of glass, it propagates faster and often with low dispersion, and the gas tolerates extremely large pulse energies and allow tunable control over dispersion and nonlinearity through pressure [3]. We propose a simpler solution using anisotropic AR tubes, elongated along the fiber radial direction, which allows simultaneously achieving (a) an increased negative curvature in the core, (b) a node-free design, and (c) a larger distance from the core to the outer capillary. All these properties could not be achieved simultaneously in the previous cases [11,12,13,14,15,16,17,22]. Such specs cannot be reproduced with the standard isotropic design without using complex designs with multiple nested AR tubes [17]

Optimization the leakage loss of the HC-ARFs
Scaling the strut thickness
Effectively single-mode operation
Comparison with other design cases
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.