Abstract

A low-loss and high-Q Ta(2)O(5) based micro-ring resonator is presented. The micro-ring resonator and channel waveguide with core area of the 700 by 400 nm(2) were fabricated on amorphous Ta(2)O(5) thin films prepared by reactive sputtering at 300°C and post annealing at 650°C for 3 hours. The Ta(2)O(5) micro-ring resonator with a diameter of 200 μm was coupled to the channel waveguide with a coupled Q up to 38,000 at a 0.9 μm coupling gap. By fitting the transmission spectrum of the resonator, the extracted loss coefficient inside the ring cavity and transmission coefficient of TE mode were 8.1dB/cm and 0.9923, leading to the estimated unloaded Q of higher than 44,000. In addition, based on the cut-back method, the propagation loss and the coupling loss of Ta(2)O(5) channel waveguide with an inverse taper were 1.5dB/cm and 3.2 dB, respectively. The proposed Ta(2)O(5) technology offers an unique alternative for fabricating high performance guided wave devices, and may well lead to novel applications in photonic integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.