Abstract
Low-light images often suffer from a variety of degradation problems such as loss of detail, color distortions, and prominent noise. In this paper, the Retinex-Net model and loss function with color restoration are proposed to reduce color distortion in low-light image enhancement. The model trains the decom-net and color recovery-net to achieve decomposition of low-light images and color restoration of reflected images, respectively. First, a convolutional neural network and the designed loss functions are used in the decom-net to decompose the low-light image pair into an optimal reflection image and illumination image as the input of the network, and the reflection image after normal light decomposition is taken as the label. Then, an end-to-end color recovery network with a simplified model and time complexity is learned and combined with the color recovery loss function to obtain the correction reflection map with higher perception quality, and gamma correction is applied to the decomposed illumination image. Finally, the corrected reflection image and the illumination image are synthesized to get the enhanced image. The experimental results show that the proposed network model has lower brightness-order-error (LOE) and natural image quality evaluator (NIQE) values, and the average LOE and NIQE values of the low-light dataset images can be reduced to 942 and 6.42, respectively, which significantly improves image quality compared with other low-light enhancement methods. Generally, our proposed method can effectively improve image illuminance and restore color information in the end-to-end learning process of low-light images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.