Abstract

Sodium-dependent high-affinity choline uptake was measured in various regions of the brains of rats irradiated for 45 min with either pulsed or continuous-wave low-level microwaves (2,450 MHz; power density, 1 mW/cm2; average whole-body specific absorption rate, 0.6 W/kg). Pulsed microwave irradiation (2-microseconds pulses, 500 pulses/s) decreased choline uptake in the hippocampus and frontal cortex but had no significant effect on the hypothalamus, striatum, and inferior colliculus. Pretreatment with a narcotic antagonist (naloxone or naltrexone; 1 mg/kg i.p.) blocked the effect of pulsed microwaves on hippocampal choline uptake but did not significantly alter the effect on the frontal cortex. Irradiation with continuous-wave microwaves did not significantly affect choline uptake in the hippocampus, striatum, and hypothalamus but decreased the uptake in the frontal cortex. The effect on the frontal cortex was not altered by pretreatment with narcotic antagonist. These data suggest that exposure to low-level pulsed or continuous-wave microwaves leads to changes in cholinergic functions in the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.