Abstract

Studies suggest that high-intensity physical exercise can cause damage to skeletal muscles, resulting in muscle soreness, fatigue, inflammatory processes and cell apoptosis. The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on a decrease in creatine kinase (CK) levels and cell apoptosis. Twenty male Wistar rats were randomly divided into two equal groups: group 1 (control), resistance swimming; group 2 (LLLT), resistance swimming with LLLT. They were subjected to a single application of indium gallium aluminum phosphide (InGaAlP) laser immediately following the exercise for 40 s at an output power of 100 mW, wavelength 660 nm and 133.3 J/cm(2). The groups were subdivided according to sample collection time: 24 h and 48 h. CK was measured before and both 24 h and 48 h after the test. Samples of the gastrocnemius muscle were processed to determine the presence of apoptosis using terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labeling. (There was a significant difference in CK levels between groups (P < 0.0001) as well as between the 24 h and 48 h levels in the control group, whereas there was no significant intra-group difference in the LLLT group at the same evaluation times. In the LLLT group there were 66.3 +/- 13.2 apoptotic cells after 24 h and 39.0 +/- 6.8 apoptotic cells after 48 h. The results suggest that LLLT influences the metabolic profile of animals subjected to fatigue by lowering serum levels of CK. This demonstrates that LLLT can act as a preventive tool against cell apoptosis experienced during high-intensity physical exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call