Abstract

BackgroundChronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with incidence of type 2 diabetes (T2D). A key driver in the pathogenesis of T2D is impairment of pancreatic β-cell function, with the hallmark of β-cell function being glucose-stimulated insulin secretion (GSIS). Reactive oxygen species (ROS) derived from glucose metabolism serve as one of the metabolic signals for GSIS. Nuclear factor-erythroid 2–related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress.ObjectivesWe tested the hypothesis that activation of Nrf2 and induction of antioxidant enzymes in response to arsenic exposure impedes glucose-triggered ROS signaling and thus GSIS.Methods and resultsExposure of INS-1(832/13) cells to low levels of arsenite led to decreased GSIS in a dose- and time-dependent fashion. Consistent with our hypothesis, a significantly enhanced Nrf2 activity, determined by its nuclear accumulation and induction of its target genes, was observed in arsenite-exposed cells. In keeping with the activation of Nrf2-mediated antioxidant response, intracellular glutathione and intracellular hydrogen peroxide–scavenging activity was dose dependently increased by arsenite exposure. Although the basal cellular peroxide level was significantly enhanced, the net percentage increase in glucose-stimulated intracellular peroxide production was markedly inhibited in arsenite-exposed cells. In contrast, insulin synthesis and the consensus GSIS pathway, including glucose transport and metabolism, were not significantly reduced by arsenite exposure.ConclusionsOur studies suggest that low levels of arsenic provoke a cellular adaptive oxidative stress response that increases antioxidant levels, dampens ROS signaling involved in GSIS, and thus disturbs β-cell function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.