Abstract

Many energy-efficient asynchronous duty-cycle media access control (MAC) protocols for wireless sensor networks (WSNs) have been proposed in recent years. However, for burst traffic, most of them suffer from significant performance degradation due to randomly waking up to communicate with each other. In this paper, we propose a new asynchronous duty-cycle receiver-initiated MAC protocol called HKMAC. In proposed HKMAC, by adaptively adjusting beacon time of the receiver and scheduling the sender's listening time during scheduled period, it can achieve low end-to-end packet delivery latency and high energy efficiency under burst traffic. We have evaluated the performance of HKMAC through detailed ns-2 simulation. The simulation results show that HKMAC can always reduce end-to-end packet delivery latency and energy consumption under various data rates in different topologies compared with RI-MAC - a state-of-the-art MAC protocol in WSNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.