Abstract

We report on near-quantum-limited intensity noise of Nd:YVO4 microchip lasers pumped with pump-noise-suppressed diode lasers. The low-frequency intensity noise of the microchip lasers is found to depend on mode correlation effects in the absorbed radiation from the diode laser pump source. A minimum intensity noise of 0.5 dB above the standard quantum-noise limit at a frequency of 250 kHz is obtained by pumping with a grating-feedback diode laser. An accurate description of the measured intensity-noise spectra by a quantum-mechanical Langevin rate-equation model is achieved by consideration of the nonlinear gain saturation that is due to the finite lifetime of the lower laser level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call