Abstract
CCN family protein 2/connective tissue growth factor (CCN2/CTGF) promotes cartilage regeneration in experimental osteoarthritis (OA) models. However, CCN2 production is very low in articular cartilage. The aim of this study was to investigate whether or not CCN2 was promoted by cultured chondrocytes treated with low-intensity pulsed ultrasound (LIPUS) and to clarify its mechanism. Human chondrocytic cell line (HCS)-2/8, rat primary epiphyseal and articular cartilage cells, and Ccn2-deficient chondrocytes that impaired chondrocyte differentiation, were treated with LIPUS for 20minat 3.0MHz frequency and 60mW/cm2 power. Expressions of chondrocyte differentiation marker mRNAs were examined by real-time PCR (RT-PCR) analysis from HCS-2/8cells and Ccn2-deficient chondrocytes at 30min and 1h after LIPUS treatment, respectively. CCN2 production was examined by Western blotting after 5h of LIPUS treatment. Moreover, Ca2+ influx was measured by using a Fluo-4 probe. The gene expression of chondrocyte differentiation markers and CCN2 production were increased in cultured chondrocytes treated with LIPUS. In addition, Ca2+ influx and phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)1/2 were increased by LIPUS treatment, and the stability of TRPV4 and BKca channel mRNAs was decreased by siRNA against CCN2. Consistent with those findings, the LIPUS-induced the gene expressions of type II collagen (COL2a1) and Aggrecan (ACAN) observed in wild-type cells were not observed in the Ccn2-deficient chondrocytes. These data indicate that chondrocyte differentiation represented by CCN2 production was mediated via MAPK pathways activated by LIPUS-stimulated Ca2+ influx, which in turn was supported by the induced CCN2 molecules in articular chondrocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.