Abstract

ObjectiveThis study aimed to explore the effect of Low-intensity pulsed ultrasound (LIPUS) on implant osseointegration and elucidate the role of α-calcitonin gene-related peptide (αCGRP) in this process. DesignIn vivo, αCGRP+/+ (Wild-type model) mice and αCGRP-/- (Knock-out model) mice with implants immediately placed in the maxillary first molars extraction sockets were treated with LIPUS. We detected details of peri-implant bone tissues by micro-CT, real-time PCR and histological analysis. In vitro, αCGRP+/+ and αCGRP-/- dorsal root ganglia (DRG) neurons were cultured and exposed to LIPUS. Then conditioned media from these neurons were collected and added to osteoblasts to analyze cell differentiation, mineralization and proliferation by real-time PCR, alkaline phosphatase (ALP) and cell counting kit‐8 (CCK‐8) assay. Besides, ELISA was performed to determine the effect of LIPUS on the αCGRP secretion in neurons. ResultsIn vivo tests revealed that αCGRP-/- mice displayed worse osseointegration when compared to αCGRP+/+ mice. LIPUS could enhance implant osseointegration in αCGRP+/+ mice but had little effect on αCGRP-/- mice. Meanwhile, αCGRP was elevated during the osseointegration with LIPUS treatment. In vitro, LIPUS promoted αCGRP secretion in DRG neurons, thereby enhanced osteogenic differentiation and mineralization of osteoblasts. Also we proved that the effects of LIPUS was duty cycle-related and LIPUS of 80% duty cycle had the strongest impacts. ConclusionsOur findings demonstrated that LIPUS could enhance osseointegration of dental implant by inducing local neuronal production of αCGRP, providing a new idea to promote peri-implant osseointegration and bone regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call