Abstract
We examined the effect of immobilization, low-intensity muscle contraction exercise, and transcutaneous electrical nerve stimulation (TENS) on tissue inflammation and acute pain following the onset of arthritis in a rat model. Sixty Wistar rats were divided into five groups: (1) Arthritis group, (2) arthritis and immobilization (Immobilization group), (3) arthritis and low intensity muscle contraction (Exercise group), (4) arthritis and TENS (TENS group), and (5) sham arthritis (Sham group). Arthritis was induced in the right knee joints by single injection of 3% kaolin and carrageenan. Immobilization of the right hindlimb was conducted by full extension of the right knee joints and full plantar flexion of the ankle joints using a plaster cast for 7 days after injection. The right quadriceps muscles were subjected to electrical stimulation (frequency: 50 Hz; intensity: 2–3 mA) for 20 min/day as contraction exercise for one week. TENS was delivered at 20 min/day for one week (frequency: 50 Hz; intensity: 1 mA). The pressure pain threshold (PPT) and paw withdrawal response (PWR) were evaluated at 1 and 7 days after injection. We also analyzed the number of CD68-positive cells in the synovium by immunohistochemistry and determined the expression level of calcitonin gene-related peptide (CGRP) in the spinal dorsal horn with immunofluorescence. Improvements of both PPT and PWR were observed in the Exercise group at 7 days after injection compared to those of the Arthritis and Immobilization groups, although only improvement of PPT was observed in the TENS group. The number of CD68-positive cells in the synovium and CGRP expression in the dorsal horn decreased only in the Exercise group. These results suggested that low-intensity muscle contraction exercise might be a better treatment for reduction of arthritis-induced inflammation and acute pain compared to immobilization and TENS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.