Abstract
Water molecules around the DNA form the hydration shell having different structural and dynamical features in different regions of the double helix. In the DNA minor groove, water molecules are highly ordered and in the case of AT nucleotide sequence, the formation of a hydration spine is observed. In the present research, the vibrations of the hydration spine have been studied to establish the mode of translational vibrations of water molecules in the DNA low-frequency spectra (water-spine vibrations). Using the developed phenomenological model with the parameters determined for different nucleotides of the DNA fragment CGCGAATTCGCG, the frequencies of vibrations of the hydration spine have been obtained within 185 ± 20 cm[Formula: see text] depending on type of nucleotide. The obtained frequencies are in the same region as the translational vibrations of water molecules in the bulk. To select the mode of water-spine vibrations from those modes that are present in the bulk water, the dynamics of DNA with different nucleotide contents has been analyzed, and the possible influence of heavy water has been estimated. The determined features of the mode of water vibrations in the hydration spine of DNA minor groove indicate that this mode may be observed in the experimental spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.