Abstract

We observed squeezed vacuum light at 795 nm in (87)Rb vapor via resonant polarization self-rotation and report noise sidebands suppression of approximately 1 dB below shot-noise level spanning from 30 kHz to 1.2 MHz frequencies. To our knowledge, this is the first demonstration of submegahertz quadrature vacuum squeezing in atomic systems. The spectral range of observed squeezing matches well typical bandwidths of electromagnetically induced transparency (EIT) resonances, making this simple technique for generation of optical fields with nonclassical statistics at atomic transitions wavelengths attractive for EIT-based quantum information protocols applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.