Abstract

The strength of the acoustic startle reflex (ASR) as a function of age was studied in adult C57BL/6J and CBA/CaJ mice, because altered ASR levels are a potential behavioral consequence of the neural reorganization that accompanies the early-onset hearing loss of the C57BL, in contrast to the normal-hearing CBA. For C57BL mice at 14-36 weeks of age, compared with 7-week-old mice, high-frequency thresholds measured with the auditory brainstem response (ABR) were less sensitive by about 25-30 dB while the hearing loss at low frequencies was 10-15 dB, but by 60 weeks losses of 45-50 dB were present across the entire spectrum. Their ASR amplitudes for 16 kHz tone pips were highest at 7 weeks and then declined with age, but, for 4 kHz tones the ASR increased in strength at 18 weeks and beyond to levels above that of the younger mice. This hyperreactivity persisted even in 60-week-old mice. The ASR for 16 kHz stimuli was positively correlated with hearing sensitivity, but the ASR for 4 kHz stimuli was positively correlated with hearing loss for mice that were 18-36 weeks of age. Furthermore, ASR amplitudes for 4 kHz stimuli were positively correlated with the 16 kHz ASR in young C57BL mice but negatively correlated in older mice. There were no similar ASR or ABR changes in adult CBA mice through 19 weeks of age. Correlations between ASR and ABR scores were always weakly positive, and correlations between 4 kHz and 16 kHz ASR amplitudes were always strongly positive. The ASR data in older C57BL mice with hearing loss are consistent with reports describing their increased neural representation of low-frequency sounds and reinforce the value of this strain for studying the functional consequences that accompany age-related cochlear degeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call