Abstract

Seismic low-frequency shadow (LFS) is a zone in the seismic data that is characterized by strong anomalously low-frequency energy compared to its surroundings and it occurs beneath a body that strongly attenuates the energy of the propagating seismic waves. LFS can be used as a tool to monitor the migration of CO2 in a reservoir. To demonstrate this on the Sleipner field, North Sea, where a large amount of CO2 is being sequestered in the deep saline Utsira Formation. A spectral decomposition analysis of time-lapse 3D seismic data of the Sleipner field, North Sea, was carried out using the continuous wavelet transform. We examined the common frequency stacks corresponding to frequencies 10 Hz, 14 Hz, 30 Hz, and 40 Hz for the occurrence of LFS in the pre-and post-CO2 injection cases data. We did not find any signatures corresponding to LFS in the pre-CO2 injectionscenario. In the post-CO2 injection cases, LFSs were detected below the reservoir base at frequencies lower than 30 Hz. It is shown that the seismic low-frequency shadows are not artefacts but occur due to attenuation of the high-frequency components of the propagating seismic waves in the CO2-saturated Utsira Formation. The low-frequency shadows are localized anomalies at the base of the formation; hence it can be applied to study the behaviour of CO2 when stored in a reservoir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.