Abstract
The method of torsion oscillations is used to measure the dynamic modulus of elasticity of magnetically controlled elastomers that comprise silicone rubber and carbonyl iron in the low-frequency (up to 100 Hz) range. The samples are synthesized in the absence of a magnetic field; therefore, they have an isotropic structure. In the measurements, a constant magnetic field (up to 24 kA/m) is superimposed along the axis of forced torsion oscillations of the sample. A simple model of the rheological behavior of magnetically controlled elastomers is proposed; the problem of torsion oscillations of a cylindrical sample is solved. From the comparison with the experiment for the materials under study, we determine the coefficients of the theoretical model and the corrections to them, which are made because of variations in the rheology of magnetically controlled elastomers under the influence of a magnetic field. The derived relations make it possible to exclude artifacts and to adequately describe dependences of the storage and loss moduli on the frequency of mechanical loading and the strength of the applied magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.