Abstract

The principles and application of Generation-Recombination (GR) noise spectroscopy will be outlined and illustrated for the case of traps in Ultra-Thin Buried Oxide Silicon-on-Insulator nMOSFETs and for vertical polycrystalline silicon nMOSFETs. It will be shown that for scaled devices the GR noise is originating from a single defect, giving rise to a so-called Random Telegraph Signal (RTS). Several methods will be described for an accurate extraction of the RTS parameters (amplitude, up and down time constant). It will be demonstrated that besides the deep-level parameters also the position of the trap in the channel can be derived from a numerical modeling of the RTS amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.