Abstract

In this work a comprehensive investigation of low-frequency noise in ultrahigh vacuum/chemical vapor deposition (UHV/CVD) Si and SiGe bipolar transistors is presented. The magnitude of the noise of SiGe transistors is found to be comparable to the Si devices for the identical profile, geometry, and bias. A comparison with different technologies demonstrates that the SiGe devices have excellent noise properties compared to AlGaAs/GaAs heterojunction bipolar transistors (HBT's) and conventional Si bipolar junction transistors (BJT's). Results from different bias configurations show that the 1/f base noise source is dominant in these devices. The combination of a 1/Area dependence on geometry and near quadratic dependence on base current indicates that the 1/f noise sources are homogeneously distributed over the entire emitter area and are probably located at the polysilicon-Si interface. Generation/recombination (Gm) noise and random telegraph signal (RTS) noise was observed in selected Si and SiGe devices. The bias dependence and temperature measurements suggest that these G/R centers are located in the base-emitter space charge region. The activation energies of the G/R traps participating in these noise processes were found to be within 250 meV of the conduction and valence band edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.