Abstract
High-entropy alloys (HEAs) provide new research avenues for alloy combinations in the periodic table, opening numerous possibilities in novel-alloy applications. However, their electrical characteristics have been relatively underexplored. The challenge in establishing an HEA electrical conductivity model lies in the changes in electronic characteristics caused by lattice distortion and complexity of nanostructures. Here we show a low-frequency electrical conductivity model for the Nb-Mo-Ta-W HEA system. The cocktail effect is found to explain trends in electrical-conductivity changes in HEAs, while the magnitude of the reduction is understood by the calculated plasma frequency, free electron density, and measured relaxation time by terahertz spectroscopy. As a result, the refractory HEA Nb15Mo35Ta15W35 thin film exhibits both high hardness and excellent conductivity. This combination of Nb15Mo35Ta15W35 makes it suitable for applications in atomic force microscopy probe coating, significantly improving their wear resistance and atomic-scale image resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.