Abstract
During early reperfusion after myocardial ischemia, the mechanisms responsible for leukocyte accumulation in the heart are unclear. We examined the effects of reducing coronary blood flow during reperfusion on leukocyte accumulation in coronary capillaries and postcapillary venules. Isolated rat hearts were perfused for 30 min and then subjected to 30 min of 37 degrees C, no-flow ischemia. The deposition of fluorescently labeled leukocytes was observed directly in coronary capillaries and venules using intravital microscopy after 5, 20, and 35 min of reperfusion. Blood cell velocity was measured in venules after 5 min of reperfusion (R5), and shear rate (s-1) was calculated. Four groups were studied: nonischemic control (NIC) hearts and postischemic hearts reperfused at full flow (I/R100) and at 50 and 10% of full flow (I/R50 and I/R10, respectively). In I/R100 hearts, there was a significant increase in leukocyte trapping in capillaries compared with the NIC group (R5: 5.7 +/- 0.6 vs. 2.0 +/- 0.4 leukocytes/capillary field, respectively; P < 0.05). However, the increase in leukocyte adhesion to venules was not statistically significant compared with NIC (R5: 3.2 +/- 0.4 vs. 1.5 +/- 0.6 leukocytes/100-micron venule, respectively; P < 0.2). In I/R50 hearts, a further increase in leukocyte accumulation occurred in the capillaries but not in the venules. However, in I/R10 hearts, there was a statistically significant increase in both capillaries (R5: 9.2 +/- 0.8; P < 0.05) and venules (R5: 4.4 +/- 0.5; P < 0.05). When leukocyte margination in coronary venules was examined as a function of venular shear rate, a significant correlation (r = 0.99, P < 0.05) was found. These results suggest that, after ischemia, a reduction in reflow enhances leukocyte trapping in capillaries and that leukocyte adhesion in venules is inversely related to shear rate. Enhanced leukocyte accumulation may in turn increase the leukocyte contribution to early reperfusion injury in the heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.