Abstract

An extensive set of covariances for neutron cross sections in the energy range 5 keV-20 MeV has been developed to provide initial, low-fidelity but consistent uncertainty data for nuclear criticality safety applications. The methodology for the determination of such covariances combines the nuclear reaction model code EMPIRE, which calculates sensitivity to nuclear reaction model parameters, and the Bayesian code KALMAN to propagate uncertainty of the model parameters to cross sections. Taking into account the large scale of the project (219 fission products), only partial reference to experimental data has been made. Therefore, the covariances are, to a large extent, derived from the perturbation of several critical model parameters selected through the sensitivity analysis. These parameters define optical potential, level densities and pre-equilibrium emission. This work represents the first attempt ever to generate nuclear data covariances on such a scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.