Abstract

The conformal Galilei algebra (CGA) is a non-semisimple Lie algebra labelled by two parameters $d$ and $\ell$. The aim of the present work is to investigate the lowest weight representations of CGA with $d = 1$ for any integer value of $\ell$. First we focus on the reducibility of the Verma modules. We give a formula for the Shapovalov determinant and it follows that the Verma module is irreducible if $\ell = 1$ and the lowest weight is nonvanishing. We prove that the Verma modules contain many singular vectors, i.e., they are reducible when $\ell \neq 1$. Using the singular vectors, hierarchies of partial differential equations defined on the group manifold are derived. The differential equations are invariant under the kinematical transformation generated by CGA. Finally we construct irreducible lowest weight modules obtained from the reducible Verma modules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.