Abstract
A fast rotating Bose–Einstein condensate can be described by a complex valued wave function minimizing an energy restricted to the lowest Landau level or Fock–Bargmann space. Using some structures associated with this space, we study the distribution of zeroes of the minimizer and prove in particular that the number of zeroes is infinite. We relate their location to the combination of two problems: a confining problem producing an inverted parabola profile and the Abrikosov problem of minimizing an energy on a lattice, using Theta functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.